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Quick Overview
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• LANL started taking greater interest in polymer EOS in late 2000’s
– Possible cause of poor simulation results
– Historically neglected

• Themes that have emerged from that work
– Polymers decompose chemically when driven at HE detonation pressures
– Porosity affects decomposition
– Decomposition affects flow
– Implications of ↑ for modeling
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Polymer Hugoniots Contain Structure
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• Derivative discontinuities at up∼3 km/s
(P ∼ 25 GPa)

• Middle line segment not at equilibrium
• Volume reduction in P -V

– Degree of reduction correlates
qualitatively with chemical structure

Carter & Marsh, LA-13006-MS, LANL (originally prepared in 1977)
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Hugoniot Structure: Two Early Views
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• Phase transition (LANL, 1977)
– analogous to graphite→diamond
– “compression...is two-dimensional in nature” below the transition, “more typical

of a three-dimensional solid” above

• Decomposition (LLNL, 1979)
– “..hydrocarbons at high pressure (&10 GPa) and high temperature (&1000 K)

dissociate into carbon in the diamond phase and hydrogen in a condensed
molecular phase”
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Hugoniot Structure: Recovery Experiments
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• Experiments on polyethylene and Teflon
• Setup

– Single-shock, Mach compression
– Hermetically-sealed capsule

• Enabled recovery of soot and gases
• Mass spectrometry, XRD, TEM

• Polyethylene results
– Polymer recovered at ∼20 GPa
– Gases and soot recovered 28-40 GPa

• Gases were >80% mol CH4 and H2
• Soot was neither graphite nor diamond

=⇒ different material (with different EOS)
when shocked above threshold

PE: SCCM-1989, p. 687; PTFE: J. Chem. Phys. 80, 5203 (1984)
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Reactant EOS: SESAME Framework
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• Purely volumetric, no strength or viscoelasticity
• 3-part decomposition for free energy of each phase

F (ρ, T ) = φ(ρ) + Fion(ρ, T ) + Felec(ρ, T )

• Minimize F as function of mass fractions→ equilibrium phase boundaries

• With regard to polymers:
– Cold curve extracted from fit to shock data

• This assumes Mie-Grüneisen form: P (ρ,E) = Pref(ρ) + ρΓ(ρ) (E − Eref(ρ))

– Ionic models are generalizations of Debye
• Polymer thermal response not well-described by single Θ

– Thomas-Fermi-Dirac for electrons
• Electronic excitations not that important for ρH/ρ0 . 3

– Typically one phase + liquid
• Liquid usually pretty hacky
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Products EOS: Thermochemical Modeling
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• Decomposition products as mixture of fluids and bulk solids
– Each constituent has its own free energy model

• Fluids: spherical, pairwise interaction potential (EXP6) translated to free
energy with perturbation theory

• Solids: SESAME model

– Mixture rule required (non-unique)
• Assume full thermodynamic (and thus, chemical) equilibrium

– Adjust concentrations until minimal free energy found and stoichiometry
preserved
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Leiding, et al., “Reactive Monte Carlo Validation of Thermochemical Equations of State, ” AIP Conf. Proc. 2272, 030017 (2020)
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Products EOS: Heat of Reaction
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• The origin of a products Hugoniot lies
on a separate EOS surface

• Thermochemical EOS surface
determined purely by stoichiometry

• Offset from the reactant surface is not
– closely related to heat of formation
– essential for capturing energy

absorption or release
• We’ve done this in two ways:

– adjust to shock data
– calculate from heat of combustion
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Limitations of Thermochemical Modeling
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• Standard thermochemical tables are
T ∼ 100′s− 10000 K, P ∼ 0.01− 150 GPa

• Limitations we understand:

– predefined constituent catalog
– potential form (mostly a problem for H2)
– equilibrium assumption

• Stuff we’re less sure about:

– G < 0 at high pressures
– Γ < 0 at high and low T

EXP6 potential

PMMA isotherms
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PMMA: Shock
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• Dashed segments indicated metastability (reactant) or physical
impossibility (products)

• Eshift from heat of combustion indistinguishable from optimized value
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PMMA: Reshock and Release
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FSI configuration
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• SNL and Russian reshock/release
experiments from common origin
– SNL: P ≈ 45 GPa
– Russian: P ≈ 41 GPa

AIP Conf. Proc. 85, 131 (2006); 1426, 771 (2012); Dokl. Akad. Nauk SSSR, 329, 322 (1993)
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PMMA: Sounds Speeds at Pressure
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FSI configuration
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• t3 is the observable, indicated by
end of flat-top

• Metric is δt3/(t2 − t1)
• Errors in CL of < 5%

– very similar results in PE

AIP Conf. Proc. 85, 131 (2006); 1426, 771 (2012)
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PMMA: Product Compositions
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• Thermochemical products dominated by solid carbon and water
• Dominant change along the Hugoniot: C + H2O→ CO + H2

• Thermochemical can’t see reactant (no time), QMD can’t see phase
segregation (system size and timescale limitations)

• Oversimplified vs. uncertain relation to thermodynamics
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Product Temperatures & Reaction Thermicities
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• Thermochemical modeling consistently predicts large temperature rises
– PMMA is only case in which we have actual data
– Temperatures are most poorly constrained thermochemical quantity

• Reaction at constant pressure is exothermic
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Old way of capturing “chemistry”
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• Old EOS build structure into cold curve
• structure preserved in all isotherms until

“washed out” by thermals
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Old way of capturing “chemistry”
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• Old EOS build structure into cold curve
• structure preserved in all isotherms until

“washed out” by thermals
• produces multiwave structure upon

release
• reversible phase transition rather than

irreversible chemistry
• When might we care?
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Heterogeneous Materials are Horrible People
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SX358

• Not always clear what you’re probing
– Spot size of our standard PDV is roughly 450 µm
– Pore diameters span range O(10 µm−1 mm)

• US ≈ up, so σ(ρ) large
• Shot-to-shot variability > known sources of uncertainty
• We have the same problem with powders

Image courtesy of Brian Patterson (MST-7, LANL), data courtesy of John Lang (M-9, LANL)
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Adjustments for Porosity
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polyurethane foams

30% 50% 60% 75%

• Many polymers of interest to NNSA are porous, some highly
• Model reactant as SESAME + P − α porosity model

– Only porous parameter is crush pressure, Pc
• Still thermochemical modeling for products

– Vary Eshift as f(ρ0), if necessary
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Polyurethane Results
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• Foam products expand relative to compressed reactant
• Reaction threshold drops dramatically as f(ρ0)
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Polyurethane Results
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SX358 Results
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• Patterns consistent with polyurethane
• Uncertainties again: multislug, multi-PDV

Data courtesy of John Lang (M-9, LANL); Brittany Branch and Chad McCoy (SNL); figure courtesy of Katie Maerzke (XTD-IDA, LANL)
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Transition Thresholds
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• Roughly exponential drop
• Strong dependence on timescale of experiment
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Old Way of Treating Foams
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all polyurethane data

• Initialize at foam density, ramp to solid density Hugoniot
• Some error in density, energy, sound speed
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Disentangling Non-Equilibrium Effects (or so we hoped)
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• 1 embedded gauge, 5 transmission shots on polyimide
• similar series on polysulfone
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Measuring & Simulating Reactive Wave
Evolution In Situ
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gauge package

→

package in sample

→

sample in barrel

• Embedded electromagnetic gauges
– Advantage: minimizes measurement perturbation
– Disadvantage: limited to insulating samples and impactors

• Hydrodynamic simulation requires:
– Reactant and products EOS
– Rate model. We used Arrhenius: R ≡ λ̇ = (1− λ)nνe−Ta/T

– Closure rule. We used pressure-temperature equilibrium.

Sheffield, et al., 11th Int. Det. Symp. 451, (1998)
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In Situ Wave Profiles: Energetic Materials
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• ZND: inert shock followed by reaction zone to CJ state
• Reaction behind feeds the front, strengthening lead shock
• Reaction pushes unsteady→ steady

Menikoff, LA-UR-15-29498; Gustavsen, et al., J. Appl. Phys. 99, 114907 (2006)
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In Situ Wave Profiles: Phenylacetylene
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• Reaction behind the front weakens lead shock
• Initial (P1) wave decays, second (P2) wave carries to products
• Decay and rise times contain kinetic information

Dattelbaum & Sheffield, AIP Conf. Proc. 1426, 627 (2012); Sheffield thesis, WSU (1979)
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Rate Model Calibration
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• We used 1/(adiabatic induction time) as a proxy for the rate

tad(T0) =
T 2
0

νTa(T1 − T0)
e(Ta/T0)

T0 = reactant temperature

T1 = product temperature

• In our case, these are Hugoniot temperatures
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R. Menikoff, LA-UR-17-31024 (2017)
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Rate Model Calibration
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• Because T0 = T0(up), we’ll
consider tad(up)

• For a given pair of EOS:
– Ta sets up range
– ν shifts laterally
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Polyimide Shock Data
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• CM reactant and products fits cross

– Is this partly due to their including reacting points in their reactant fit?



UNCLASSIFIED

Polyimide: Embedded Gauge Results
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• Simulation: 50 µs (Eulerian) mesh, Z = 830 µs−1, Ta = 8560 K, n = 2

– Lagrangian tracers at gauge locations
• Experimental up analyzed similar to HE initiation data
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• Simulation: 50 µs (Eulerian) mesh, Z = 830 µs−1, Ta = 8560 K, n = 2

– Lagrangian tracers at gauge locations
• Experimental up analyzed similar to HE initiation data
• Attenuation of ∼ 15% in both US and up, slightly large in simulation
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• Simulation: 50 µs (Eulerian) mesh, Z = 830 µs−1, Ta = 8560 K, n = 2

– Lagrangian tracers at gauge locations
• Experimental up analyzed similar to HE initiation data
• Attenuation of ∼ 15% in both US and up, slightly large in simulation
• Data and simulations suggest sluggish reaction that doesn’t proceed to completion
=⇒ let’s try a stronger input
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Polyimide Shock Data
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• CM reactant and products fits cross

– Is this partly due to their including reacting points in their reactant fit?
• Gauge results:

– Use input (blue square) to refit reactant (blue curve)
• Reactant and products no longer cross

– The cusp state (green square) lies on CM reactant (black line)
• Does P1 relaxation have a long “tail”?
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Polyimide Transmission Analysis
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• Advantage: no restriction to non-conducting impactors
• Disadvantage: interaction with the window perturbs the flow
• The general problem is underdetermined – more unknowns than equations

– Similar configurations: Wackerle (1962), Ahrens (1968), Erskine (1992),
McWilliams (2008)

– General theory: Courant & Friedrichs, Zel’dovich, Forbes
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Polyimide Transmission Analysis
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• Ignore wave-wave interaction =⇒ all about pinpointing t2
• P2 is “thickened” (Zel’dovich) - what are the constraints on t2?

– t1 ≤ t2 ≤ t(max(uw))
– t2 − t1 should decrease monotonically with Pinput
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Polyimide Transmission Analysis
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• Try the old way instead: t2 = t1 (red points)
– Consistent with old results
– 2 of 5 points appear fully reacted

• So what is causing the structure in those profiles?
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Polyimide Transmission Analysis
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• Simplest reshock analysis: reflect old CM products fit and impedance match into LiF
– Yields window velocities correct to within a few % (dashed, left panel)

• Reshocking one thickened wave yields...another thickened wave
– Shift in composition from equilibrium shock to equilibrium reshock
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Polyimide Transmission Analysis
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• Simplest reshock analysis: reflect old CM products fit and impedance match into LiF
– Yields window velocities correct to within a few % (dashed, left panel)

• Reshocking one thickened wave yields...another thickened wave
– Shift in composition from equilibrium shock to equilibrium reshock
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Polysulfone Transmission Experiments
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PDV at interface with window

increasing sample thickness→

Simulation
• underestimates P1 decay
• exaggerates P1 variation with

thickness
• P2 slow when thin, fast when

thick
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Reactive Wave Profiles: Foams
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PDV in polyurethane foams

• Clockwise from upper left: 30%, 50%, 60%, 75% porous
• One wave observed
• PDV increasingly “bleached” due to high T
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Summary

• Polymers decompose under shock loading
– up∼3 km/s, P∼25 GPa at full density
– This is not a reversible phase transition..

• Details affected strongly by porosity
– Products expand upon reaction
– Thresholds drop dramatically

• Polymer decomposition produces non-trivial wave evolution
– Able to capture some qualitative features with simple rate model
– Qualitative features of transmission profiles resemble those of metals
– Unable to cleanly disentangle multiwave structure from interactions with

window in transmission geometry
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Extra Slides
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Transmission Profiles in Metals
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VISAR at (reshock)
interface with window

α→ ω phase transition in Zr

Rigg, et al., J. Appl. Phys. (2009)
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Reactive Wave Profiles: Schematic
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• Reaction behind weakens lead shock
• Waves separate rather than converge
• Initial (P1) wave decays, second (P2) wave carries to products
• Decay and rise times contain kinetic information

Dremin, Combust. Explos. Shock Waves (1965); Dattelbaum AIP Conf. Proc. (2018)
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Detonation Criterion
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• In order to produce a self-sustaining wave, a material must have a positive
thermicity coefficient, σ:

σ =

(
∂P

∂λ

)
V,E

=
∆V

V
− Γ

c2
∆H

λ = reaction progress variable

Γ = Grüneisen parameter

c2 = (∂P/∂ρ)S,λ = frozen sound speed

∆ = (∂/∂λ)T,P

• Exothermicity (∆H < 0) isn’t sufficient (or even necessary!) for detonation

– “The importance of the volume term has often been overlooked...”

Fickett and Davis, Detonation: Theory and Experiment
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PMMA: Reactant Thermal
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• CP ∝ T at low T , never gets to classical limit
– We shove glass transitions and decomposition into melt

• Expansion surprisingly good given M-G constraint
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PMMA: Reactant Thermal

Los Alamos National Laboratory UNCLASSIFIED November 9, 2021 | 42

0 50 100 150 200 250 300 350 400 450
T (K)

0

0.5

1

1.5

2

2.5

3

3.5

C
P
 (

J/
g
/K

)

EOS
Data
Dulong-Petit

40 60 80 100 120
T (K)

C
P
 /

 T
 (

ar
b

)

0 0.5 1 1.5 2 2.5 3 3.5
P (GPa)

0.9

0.92

0.94

0.96

0.98

1

C
P
(P

)/
C

P
(0

)

EOS
Data
Data (bounds)

0 100 200 300 400
T (K)

0.92

0.94

0.96

0.98

1

η
=

ρ
/ρ

0

reactant
Asay
Haldon
Kuznetsov
Agari

T
g

T
d

• CP ∝ T at low T , never gets to classical limit
– We shove glass transitions and decomposition into melt

• Expansion surprisingly good given M-G constraint
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Temperature Usually Increases
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• In most cases we find T > 0 upon decomposition
• Foam temperatures very high due to P − V work
• High T observable in “bleached” PDV signal

Dattelbaum and Coe, Polymers (2019)


